
Impact Factor-4.013 e-ISSN: 2581-6667

International Journal of Engineering and Creative Science, Vol. 5, No. 9, 2022
www.ijecs.net

9

Cross-Project Defect Prediction Using Deep

Learning Techniques

Ms. Prachi Sasankar
1
, Dr. Gopal Sakarkar

2

Dept. of Computer Science, School of Science, G.H.Raisoni University,Saikheda, MP, India

 Dept. of Artificial Intelligence, G. H. Raisoni College of Engineering, Nagpur, MH, India

Abstract – Software testing is useful in increasing the quality of software, as high-quality software is devoid of errors,

user-friendly, and provides client happiness [1]. The goal of fault-prediction approaches is to forecast which software

modules are defective so that they can be used in later stages of software development. Initially, this paper focused on

traditional types of Testing, Software defect management, Software Fault prediction and explored Machine Learning

techniques. SFP models are examined and analyzed from many perspectives. The purpose of this work is to assist

researchers in comprehending and exploring various facets of the fault prediction process as it relates to software fault

prediction. The effort put into this article will help scholars gain a grasp on current best practices and certain well-known

methodologies by searching through various libraries, websites, and research papers to discover all important

publications released until 2020.

Keywords- Machine Learning (ML), ML Techniques, Software Defect Management, Software Fault Prediction,

Software Testing (ST), Cross Project Defect Prediction (CPDP).

I- INTRODUCTION

Almost all industries, nowadays, are dependent on

software. Software testing is the process of comparing a

system to the real need in order to find any mistakes,

gaps, or missing requirements. Software defect prediction

models are useful for understanding, evaluating, and

raising the bar for a software package. Software testing is

a comprehensive and ongoing activity across the software

development and maintenance process [3] [1]. Software

vulnerability, software defects, software bugs lead to

software security problems, further leading to resource

loss, bad user experience, less client satisfaction, and

increased development cost [4]. The reason behind this is

defective software modules [5] [1]. To produce High-

Quality Software we must thoroughly test it to check

whether it is error-free, user-friendly, and with user-

accepted features. These Bug-Prediction techniques tell

us about faulty modules before the testing phase thus

saving time and cost of production. Erroneous software

has unbalanced data [1].

II- CLASSICAL TESTING TYPES

A. Types of Testing - Methods of software testing-

Manual testing and Automated testing [8].

Manual Testing- This method is where software tester

follows a test plan and therefore the written test plans

lead them to a group of important test cases [9]. The

early stages of SDLC use manual testing to detect errors

and solve the errors compared to the expected output.

SRS documents, design documents, source code, etc are

referred to in this static testing [8] [11].

Automated Testing- Here the dynamic behaviour of code

is analysed and validation of actual outputs is done.

Skilled and domain knowledge experts verify input

values and output values in testing [12]. Previous studies

on software testing methods have been conducted, but no

specific criteria have been established [12].

III-SOFTWARE FAULT PREDICTION

Software fault prediction (SFP) is a technique for

increasing software quality through the use of software

metrics (SQ). Statistical methods are used to forecast

software errors in software fault prediction approaches

[5]. Defect prediction at method-level needs attention

which provides advanced information on defective

Impact Factor-4.013 e-ISSN: 2581-6667

International Journal of Engineering and Creative Science, Vol. 5, No. 9, 2022
www.ijecs.net

10

software modules [12]. Real-time defect prediction plays

a vital role and is more useful in network development

applications. Hybrid Learning and Deep Learning

techniques modeled some methods which can improve

prediction results, in cross-projects as well as within-

project classification [13].

Investigators had formerly explored and suggested

different classification approaches viz- Naïve Bayes,

Logistic Regression, Decision Tree, Support Vector

Machine, Ensemble Approaches, K-Means Clustering &

Fuzzy Clustering [5] [14]. The utmost examination is

done on Statistical Techniques and Supervised

Techniques which uses labeled classified data.

Unsupervised learning doesn't use former literal data [7].

IV-SFP MODELS

A. Prediction Model using Size and Complexity-

This paradigm overrides the programmers' and designers'

unintended consequences. They are the human factors

that actually commence the defects, so any attribution

for flawed code depends on the individual(s) to a certain

extent.

B. Machine Learning Basic Models

ML had proven results for resolving these defect

prediction problems. When the domain of problems is

not exactly defined and human intervention is not

sufficient, ML algorithm comes into the picture.

Machine learning includes different types of techniques

[16] of learning like Artificial Neural Networks (ANN),

Bayesian Belief Networks (BBN), Concept Learning

(CL), Reinforcement Learning (RL), Genetic Algorithms

(GA) and Genetic Programming (GP), Instance-Based

Learning (IBL), Decision Trees (DT), Inductive Logic

Programming (ILP), and Analytical Learning (AL).

1. The Probabilistic Model for Defect Prediction using

Bayesian Belief Network –

BBN can be exploited to support effective decision

making for SPI (Software Process Improvement), by

executing the following steps –

Fig. 1. Bayesian Approach [24]

2. The Fuzzy Logic Model

This approach works with an approximate value and is

based on the concept of reasoning.

III-

IV-

V-

Fig 2. Fuzzy Logic Model[16]

The major advantage of Fuzzy logic, which is based

on human intuition and behaviour, is that, unlike typical

yes/no answers, it considers the degree of truth and hence

allocates for more human-like responses [16].

3. Defect Prediction Models Based on Genetic

Algorithms-

It's a form of Evolutionary Algorithm that develops

solutions through natural processes including mutation,

selection, and crossover [17].

Fig 3. Genetic Algorithm Based Model [17-19]

The following are some things to think about. a) To

establish whether a solution is possible, a fitness

function must be present. b) A chromosome must be

used to symbolize a solution once it has been

discovered. c) It's time to figure out which genetic

operators will be used. (Fig.3)

Impact Factor-4.013 e-ISSN: 2581-6667

International Journal of Engineering and Creative Science, Vol. 5, No. 9, 2022
www.ijecs.net

11

4. Software Defect Prediction Models using Artificial

Neural Network –

The architecture and design of the artificial neural

network are modelled by the human biological system.

C. Defect Density Prediction Model

The total verified flaws divided by the size of the

software object being measured is referred to as defect

consistency. The total number of problems associated

with a specific software entity over a given time period is

called the Number of Known Faults [18].

1. Constructive Quality Modelling for Defect Density

Prediction (COQUALMO)

The COQUALMO model is usually applied to the first

phases of the software lifecycle because of the activities

of study and style.

Fig 4. COQUALO Model [26]

2. Defect Prediction Model based on Six Sigma Metrics

The Six Sigma Metrics-based Model is a method for

building a mathematical model for predicting functional

failures in system testing that is both structured and

methodical. It concentrates on V-Model-based software

development projects. Prior to system testing, the Six

Sigma method analyses essential parts in phases that

have a direct impact on defect identification.

V- WHY USE THE CROSS-PROJECT DEFECT

PREDICTION MODEL

Only when defect data is available can a good learning

process be carried out. In practice, however, not all

software businesses keep accurate records of past failure

data or enough data from earlier projects [5]. External

projects with known defect information can be used to

build the training set in this study. Cross-project Defect

Prediction (CPDP) [4] - From one viewpoint, such a

methodology tends to the absence of chronicled

imperfection information; then again, it presents

heterogeneity in information, which might diminish the

viability of deformity prediction models [6].

Cross-project defect prediction refers to the difficulty of

effectively transferring source project knowledge to

construct a defect prediction model for the target project

(CPDP) [4]. There are three types of existing methods:

supervised learning, unsupervised learning, and semi-

supervised learning. The modules from the source project

will be used to construct the model in supervised

learning-based methods. Based on whether the source

and target projects use the same metric set, these methods

can be divided into two categories: homogeneous cross-

project defect learning and heterogeneous cross-project

defect prediction [1][4].

With limited historical software modules data, the

concept “Within-Project-Defect–Prediction (WPDP)”

also didn’t come up with great results. Datasets of

software projects with partial statistical measures used

Cross-Project Defect Prediction (CPDP) as a

countermeasure to overcome WPDP problems [13].

Research showed that the poor quality of training data

used in WPDP gave substandard results. These

inadequacies of properly trained historical data are a

hindrance to the detection of upcoming faults in the

modules, new version projects. CPDP is used to classify

defect-prone modules obtained from the public datasets

available [19]. Though CPDP was a major invention, the

quality of defects in each section that were verified was

not considered. CPDP is beneficial and effective for fault

prediction; when research is done on external projects’

historical data. CPDP uses separate learning and testing

datasets, thus avoiding the dependency of data and giving

unbiased results.

VI- PREVIOUS LITERATURE REVIEW

This section focuses on publications that used machine

language techniques, neural network models, and deep

learning techniques.

Sumit Mahapatra et al [7]. In this paper, Advanced

machine learning capabilities like deep learning are

studied. Software engineering tasks like code generation,

fault prediction, defect analysis, code search and API

sequence learning can use deep learning technology. In

each category of vulnerability analysis, this study

summarized prior studies as well as current state-of-the-

art stages and approaches. And the time and effort put

into it will aid scholars in understanding current best

practices as well as some well- known strategies.

Impact Factor-4.013 e-ISSN: 2581-6667

International Journal of Engineering and Creative Science, Vol. 5, No. 9, 2022
www.ijecs.net

12

Ning et al [5] Software Fault Prediction techniques use

unsupervised learning, which is studied in detail by the

author. For this review, papers from 2000 to 2018 were

evaluated. The author has completed 49 studies with in-

depth analysis. In order to obtain more accurate findings,

the author stressed the use of Unsupervised Learning

approaches for fault prediction.

Han Cao et al [4] The challenges with standard machine

learning, deep learning, and hybrid learning were

discussed in this work. The author compared and

contrasted all of the following strategies and

methodologies. When it comes to network creation and

implementation, Just-In-Time research is crucial. In the

world of Just-In-Time research, real-time defect

prediction is crucial. Deep Learning and Hybrid

Learning have been shown to enhance prediction rates in

both cross-project and intra-project scenarios, according

to research.

Khuat T et al [20] Here author had used an ensemble-

based bagging mechanism and SMOTE on imbalanced

data for Software defect prediction. Metrics like

Accuracy, Precision, Recall, and F1-score were

calculated on datasets JC1, KC3, PC1, Ant-1.7, Synapse-

1.2. Results of the experiment showed that combining

ensemble learning with the sampling techniques

increased prediction performance.

Alsawalqah H [20] et al employed a hybrid ensemble

strategy with several classifiers on 12 failure datasets

from PROMISE and NASA data repository in this study.

The goal is to use heterogeneous ensemble approaches to

study SFP. Precision, Recall, and G-means were used as

base measures. The research revealed that bagging and

Adaboost learning techniques gave lesser accuracy of

predictions compared to ensemble methods proposed by

the author.

Rehan Ullah Khan et al (2020) Cross-project defect

prediction was employed in this study, which frequently

reuses data from other projects. It works well when the

data from the training models is more than enough to

meet the project's requirements. The performance of

various Machine Learning methods is determined on the

dataset used to train the prediction model. Defect

Induction Changes are also predicted using ML

techniques. CM1, JM1, KC1, KC2, and PC1 are the five

modules and repositories used in this work to model the

outcomes using the PROMISE dataset. We used four

distinct classifiers to build the dataset: Bayes network,

Random forest, SVM, and Deep Learning based on F-

measure, which made it more resilient and outperformed

all other models. On performing various experiments,

Random Forest and Deep learning work better than

Bayes network and SVM (on all five datasets). In the

proposed model of defect prediction, it requires some

heterogeneous metric values that will give accurate

predictions. This paper uses state-of-the-art deep

learning and random forest to conduct a series of

experiments on five different datasets. Using 10-fold

cross-validation, the proposed model detects an error

with 90 percent accuracy. On all five datasets, the

obtained results show that Random Forest and Deep

Learning provide more accurate predictions than Bayes

network and SVM. For more accurate defect detection,

the author created a Deep Learning classifier.

Jain M et al [21] Here the author experimented with

AdaBoost, AdaBoost.M2, RUS Boost, SMOTE Booster,

MSMOTE Boost, Data Boost using AUC, G-Mean and

Balance parameters. Results had shown that RUSBoost

had given best performance in handling imbalanced data.

The second-best results were given by SMOTEBooste

followed by SMOTEBoost Ensemble methods.

Pandey SK [22] and his colleagues’ Deep feature

representation was adopted by the researchers. On 12

NASA datasets, the article used stacked denoising auto-

encoders for deep feature representation. The

performance measurements MCC, AUC, precision-

recall, and f-measure are used in the analysis of bug

prediction utilizing deep representation and ensemble

learning approaches. BPDET outperformed AdaBoost,

Bagging, Random Forest, and Logistic Boost Author had

built a Deep Learning classifier for more accurate defect

identification.

Saifudin A et al [23] The author used Cross-project

software prediction in this investigation. For

performance validity on datasets, he defined accuracy,

true positive rates, false-positive rates, and AUC. The

bagging method applied which was combined with

SMOTE had given the best results. Whereas Adaboost

had not yielded up to the par performance as compared

to other techniques applied. CM1, M W1, PC1, PC3,

PC4 were used as experimental data sets from the NASA

repository by the author.

Compos J et al [24] In his research, The results of this

study showed that combining weak learners increased a

method's overall prediction efficiency. In this work, the

author used gradient boosting, stacking, and soft voting

using Decision Tree, Bagging, and Random Forest.

Analysis of heterogeneous ensembles for online failure

Impact Factor-4.013 e-ISSN: 2581-6667

International Journal of Engineering and Creative Science, Vol. 5, No. 9, 2022
www.ijecs.net

13

prediction was the goal of the study. The experiment was

conducted on Windows XP with Service Pack 3 (SP3).

Zhigiang Li et al [25] In this paper, the author discussed

how to predict heterogeneous software defects. The

study took into account 30 software defect datasets from

a variety of software repositories. The AUC, accuracy,

Recall, and balance variables were used to compare the

results of two- stage ensemble learning (TSEL),

Ensemble Multiple Kernel Correlation Alignment

(EMKCA), and RE Sample with replacement (RES).

TSEL outperformed the baseline approaches for fault

classification, according to the results of the output

research.

Tong H et al [26] in this paper, He used Ensemble

Multiple Kernel Correlation Alignment to align 30

software project datasets (EMKCA). In Heterogeneous

Fault Prediction approaches, are Under Curve is the

main differentiator. The findings of the study revealed

that EMKCA outperformed alternative kernel learning

and ensemble learning approaches.

Table1: Comparison of Ml Techniques

S

N

Techniqu

e Used

Data

Set

Used

Advantages Limitations

1

Artificia

l Neural

Network

NASA,

AR6,

MDP

It has self-

learning

capability. The

metric

relationship

doesn’t matter

It can’t handle

Incorrect/Impr

ecise

information

2

Support

Vector

Machine

NASA,

AR1,

AR6

Better

prediction using

a Kernel

function

Large software

metrics are not

handled

3
Decisio

n Tree

NASA,

AR1,

AR6

More accurate

results are

found

Decision tree

construction is

very complex

4
Associat

ion Rule

NASA,

MDP

Historical data

is used for rules

generation and

fault prediction

It requires all

correct values

of all metrics

5
Clusteri

ng

NASA,

MDP

It is suitable for

small datasets

The unlabeled

dataset is used

VII-OUTCOME OF LITERATURE REVIEW

In SFP, no model is perfect. Applying one type of

algorithm, ensemble methods, or like on any object

oriented programming project dataset will not generalise

the prediction strategy. Hence, more research is needed

for accurate prediction percentages. Using different

types of projects and more numbers of ML algorithms on

datasets will give us more predictive fault prediction

numbers.

• To obtain better results for SQ, deep learning analysis

can be used for SFP

• Hybrid model (cross-project environment) with more

than one classifier is beneficial for defect prediction.

 Cross-project SFP models will provide more accurate

prediction rates.

• When compared to Bayes Network, Random Forest

and Deep Learning provide more precise findings.

• Ensemble Learning could be used for combining

different positive beneficial features of different

models (Refer Table 1)

VIII- FUTURE SCOPE

As the software industry is growing day by day, the

software’s are becoming more and more complex. These

complex software’s are not only difficult to debug but

also makes a person scratch his head when classifying

the modules on the basis of faulty or else non-faulty.

Table2: Common Metrics used in Classification Models

Metric Formula Particular

Accuracy

Overall

Performance

measure of model

used

Precision

Positive

Predictions

accuracy

Recall

Positive Sample’s

Coverage

F1 Score

Hybrid Metric

Usefulness Score

Impact Factor-4.013 e-ISSN: 2581-6667

International Journal of Engineering and Creative Science, Vol. 5, No. 9, 2022
www.ijecs.net

14

The process of classification was used in the early times

of software development. Here, the aim of the research is

to use fault prediction in a module rather than classifying

them into categories.

We can used Ensemble Learning to forecast the

number of errors in a dataset using different models,

such as classifiers or experts. Linear Regression,

random forest, SVM, Bagging, Boosting, MLP, and

other fault prediction approaches have been employed.

The major goal is to find the number of defects in

certain modules with a high rate of prediction so that

future debugging can be simplified [11]. To obtain

better results for Software Quality, deep learning

analysis is used for SFP to depict faults in the early

stages of SDLC using Hybrid Model. (Fig.4)

IX- FURTHER DISCUSSION & CONCLUSION

In this paper, we reviewed various classical testing

types, discussed SDM, SFP and models. We also looked

into many parts of the software failure prediction

process. We have observed that maximum review papers

are based on Machine Learning Techniques, but the

evidence is not included to support the result findings.

Most recent research had used only one type of

prediction model with reference to the object-oriented

paradigm. Because of the variability in accuracy and

false prediction results, it became vital to develop

supervised, unsupervised, or deep learning methods that

can close the prediction percentage gap and deliver more

accurate, precise, and timely results. This is used as

motivation for innovating a new hybrid model with

cross- reference predictions.

Fig.5 Proposed Methodology for software bug prediction

REFERENCES

[1] L. K. S. R. Y. Suresh, "Statistical and Machine Learning

Methods for Software Fault Prediction Using CK Metric

Suite:A Comparative Analysis," ISRN Software

Engineering, vol. 2014, p. 15, 2014.

[2] L. Z. Xiao-Yuan, "Heterogeneous defect prediction with

two-stage ensemble learning," Springer Link, 2019.

[3] R. Wahono, "A Research Trends, Datasets, Methods and

Frameworks,Systematic Literature Review of Software

Defect Prediction," Journal of Software Engineering, vol.

1, no. 1.

[4] K. T. Tung and L. M. Hanh, "Evaluation of Sampling-

Based Ensembles of Classifiers on Imbalanced Data for

Software Defect Prediction Problems," Springer Nature,

2020.

[5] P. Sasankar, "Analysis of Test Management, Functional

and Load Testing Tools," International Journal of

Scientific Research in Computer Science, Engineering and

Information Technology, vol. 1, no. 1, 2016.

[6] S.Saharudin, K.Wei and K.Na, "Machine Learning

Techniques for Software Systematic Review," Journal of

Computer Science, 2020.

[7] S.Mahapatra and S.Mishra, "Usage of Machine Learning

in Software Testing," Automated Software Engineering: A

Deep Learning-Based Approach. Learning and Analytics

in Intelligent Systems-Springe, 2020.

[8] R.U.Khan, S.Albahli, W.Albattah and M.Khan, "Software

Defect Prediction Via Deep Learning," International

Journal of Innovative Technology and Exploring

Engineering, 2020.

[9] R.Dabrowski and B.Wojcicki, "Applying Machine

Learning to Software Fault Prediction," e-Informatica

Software Engineering Journal, pp. 199-216, 2018.

[10] O.A.Qasem, M.Akour and M.Alenezi, "The Influence of

Deep Learning Algorithms Factors in Software Fault

Prediction," IEEE Access, vol. 8, 2020.

[11] O.A.Qasem and M.Akour, "Software Fault Prediction

Using Deep Learning Algorithms," International Journal

of Open Source Software and Processes,, 2019.

[12] N.Li, M.Sheperd and Y.Guo, "A systematic review of

unsupervised learning techniques for software defect

prediction," Information & Software Technology, 2020.

[13] S. P. a. R. Mishra, "BPDET: An effective software bug

prediction model using deep representation and ensemble

learning techniques," Science Direct, 2020.

[14] M.Jain, "Handling imbalanced data using ensemble

Impact Factor-4.013 e-ISSN: 2581-6667

International Journal of Engineering and Creative Science, Vol. 5, No. 9, 2022
www.ijecs.net

15

learning in software defect prediction," in International

Conference on Cloud Computing, 2020.

[15] L.Perreault, S.Berardinelli, C.Izurieta and J.Sheppard,

"Using Classifiers for Software Defect Detection," in

International Conference on Software Engineering and

Data Engineering, 2017.

[16] A. T. a. S. Kini, "Periodic Developer Metrics in Software

Defect Prediction," in International Working Conference

on Source Code Analysis and Manipulation, 2018.

[17] H.Cao, "A Systematic Study for Learning-Based Software

Defect Prediction," IOP Conf. Series: Journal of Physics:

Conf. Series, 2020.

[18] B. L. a. W. S. H. Tong, "Kernel Spectral Embeding

Transfer Ensemble for heterogeneous defect prediction,"

in IEEE Transactions on Software Engineering, 2019.

[19] G.Tassey, "The Economic impacts of inadequate

infrastructure for software testing," National Institute of

Standards and Technology, 2020.

[20] F.Salfner and M.Malek, "A survey of Online Failure

Prediction Methods," ACM Computing Surveys, 2010.

[21] C.Prabha and N.Dr.Shivkumar, "Software Defect

Prediction Using Machine Learning Techniques," in

International Conference on Trends in Electronics and

Informatics, 2020.

[22] A.Saifudin, S.Hendric and B.Soewito, "Tackling

imbalanced class on cross-project defect prediction using

ensemble smote," 2019.

[23] A.Panichella, R.Oliveto and A.Lucia, "Cross-Project

Defect Prediction Models-L’Union Fait la Force," CSMR-

WCRE, pp. 164-174, 2014.

[24] N. Anwar and S. Kar, "Review Paper on Various Software

Testing Techniques & Strategies," Global Journal of

Computer Science and Technology, vol. 19, 2019.

[25] A. Abubakar, J. AlGhamdi and M. Ahmed, "Can Cohesion

Predict Fault Density," in IEEE, 2006.

