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Abstract – Software testing is useful in increasing the quality of software, as high-quality software is devoid of errors, 

user-friendly, and provides client happiness [1]. The goal of fault-prediction approaches is to forecast which software 

modules are defective so that they can be used in later stages of software development. Initially, this paper focused on 

traditional types of Testing, Software defect management, Software Fault prediction and explored Machine Learning 

techniques. SFP models are examined and analyzed from many perspectives. The purpose of this work is to assist 

researchers in comprehending and exploring various facets of the fault prediction process as it relates to software fault 

prediction. The effort put into this article will help scholars gain a grasp on current best practices and certain well-known 

methodologies by searching through various libraries, websites, and research papers to discover all important 

publications released until 2020. 
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I- INTRODUCTION 

 

Almost all industries, nowadays, are dependent on 

software. Software testing is the process of comparing a 

system to the real need in order to find any mistakes, 

gaps, or missing requirements. Software defect prediction 

models are useful for understanding, evaluating, and 

raising the bar for a software package. Software testing is 

a comprehensive and ongoing activity across the software 

development and maintenance process [3] [1].  Software 

vulnerability, software defects, software bugs lead to 

software security problems, further leading to resource 

loss, bad user experience, less client satisfaction, and 

increased development cost [4]. The reason behind this is 

defective software modules [5] [1]. To produce High-

Quality Software we must thoroughly test it to check 

whether it is error-free, user-friendly, and with user-

accepted features. These Bug-Prediction techniques tell 

us about faulty modules before the testing phase thus 

saving time and cost of production. Erroneous software 

has unbalanced data [1]. 

II- CLASSICAL TESTING TYPES 

 

A. Types of Testing - Methods of software testing- 

Manual testing and Automated testing [8]. 

Manual Testing- This method is where software tester 

follows a test plan and therefore the written test plans 

lead them to a group of important test cases [9]. The 

early stages of SDLC use manual testing to detect errors 

and solve the errors compared to the expected output. 

SRS documents, design documents, source code, etc are 

referred to in this static testing [8]  [11]. 

Automated Testing- Here the dynamic behaviour of code 

is analysed and validation of actual outputs is done. 

Skilled and domain knowledge experts verify input 

values and output values in testing [12]. Previous studies 

on software testing methods have been conducted, but no 

specific criteria have been established [12]. 

III-SOFTWARE  FAULT PREDICTION 

Software fault prediction (SFP) is a technique for 

increasing software quality through the use of software 

metrics (SQ). Statistical methods are used to forecast 

software errors in software fault prediction approaches 

[5]. Defect prediction at method-level needs attention 

which provides advanced information on defective 



Impact Factor-4.013               e-ISSN: 2581-6667 

International Journal of Engineering and Creative Science, Vol. 5, No. 9, 2022 
www.ijecs.net 

 

10 
 

software modules [12]. Real-time defect prediction plays 

a vital role and is more useful in network development 

applications. Hybrid Learning and Deep Learning 

techniques modeled some methods which can improve 

prediction results, in cross-projects as well as within-

project classification [13]. 

Investigators had formerly explored and suggested 

different classification approaches viz- Naïve Bayes, 

Logistic Regression, Decision Tree, Support Vector 

Machine, Ensemble Approaches, K-Means Clustering & 

Fuzzy Clustering [5]  [14]. The utmost examination is 

done on Statistical Techniques and Supervised 

Techniques which uses labeled classified data.  

Unsupervised learning doesn't use former literal data [7]. 

IV-SFP MODELS 

A. Prediction Model using Size and Complexity- 

This paradigm overrides the programmers' and designers' 

unintended consequences. They are the human factors 

that actually commence the defects, so any attribution 

for flawed code depends on the individual(s) to a certain 

extent.  

B. Machine Learning Basic Models 

ML had proven results for resolving these defect 

prediction problems. When the domain of problems is 

not exactly defined and human intervention is not 

sufficient, ML algorithm comes into the picture. 

Machine learning includes different types of techniques  

[16] of learning like Artificial Neural Networks (ANN), 

Bayesian Belief Networks (BBN), Concept Learning 

(CL), Reinforcement Learning (RL), Genetic Algorithms 

(GA) and Genetic Programming (GP), Instance-Based 

Learning (IBL), Decision Trees (DT), Inductive Logic 

Programming (ILP), and Analytical Learning (AL). 

1. The Probabilistic Model for Defect Prediction using 

Bayesian Belief Network – 

BBN can be exploited to support effective decision 

making for SPI (Software Process Improvement), by 

executing the following steps – 

       
Fig. 1. Bayesian Approach [24] 

2. The Fuzzy Logic Model 

This approach works with an approximate value and is 

based on the concept of reasoning.  

 

III-  

IV-  

V-  

 

 

Fig 2. Fuzzy Logic Model[16] 

The major advantage of Fuzzy logic, which is based 

on human intuition and behaviour, is that, unlike typical 

yes/no answers, it considers the degree of truth and hence 

allocates for more human-like responses [16]. 

3. Defect Prediction Models Based on Genetic 

Algorithms- 

It's a form of Evolutionary Algorithm that develops 

solutions through natural processes including mutation, 

selection, and crossover [17]. 

 

 

 

 

 

 

 

 

Fig 3. Genetic Algorithm Based Model [17-19] 

 

The following are some things to think about. a) To 

establish whether a solution is possible, a fitness 

function must be present. b) A chromosome must be 

used to symbolize a solution once it has been 

discovered. c) It's time to figure out which genetic 

operators will be used. (Fig.3) 
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4. Software Defect Prediction Models using Artificial 

Neural Network – 

The architecture and design of the artificial neural 

network are modelled by the human biological system.  

C. Defect Density Prediction Model 

The total verified flaws divided by the size of the 

software object being measured is referred to as defect 

consistency. The total number of problems associated 

with a specific software entity over a given time period is 

called the Number of Known Faults [18]. 

1. Constructive Quality Modelling for Defect Density 

Prediction (COQUALMO) 

The COQUALMO model is usually applied to the first 

phases of the software lifecycle because of the activities 

of study and style. 

 

 

 

 

 

 

 

 

 

 

Fig 4. COQUALO Model [26] 

 

2. Defect Prediction Model based on Six Sigma Metrics 

The Six Sigma Metrics-based Model is a method for 

building a mathematical model for predicting functional 

failures in system testing that is both structured and 

methodical. It concentrates on V-Model-based software 

development projects. Prior to system testing, the Six 

Sigma method analyses essential parts in phases that 

have a direct impact on defect identification. 

V- WHY USE THE CROSS-PROJECT DEFECT 

PREDICTION MODEL 

Only when defect data is available can a good learning 

process be carried out. In practice, however, not all 

software businesses keep accurate records of past failure 

data or enough data from earlier projects [5]. External 

projects with known defect information can be used to 

build the training set in this study. Cross-project Defect 

Prediction (CPDP) [4] - From one viewpoint, such a 

methodology tends to the absence of chronicled 

imperfection information; then again, it presents 

heterogeneity in information, which might diminish the 

viability of deformity prediction models [6]. 

Cross-project defect prediction refers to the difficulty of 

effectively transferring source project knowledge to 

construct a defect prediction model for the target project 

(CPDP) [4]. There are three types of existing methods: 

supervised learning, unsupervised learning, and semi-

supervised learning. The modules from the source project 

will be used to construct the model in supervised 

learning-based methods. Based on whether the source 

and target projects use the same metric set, these methods 

can be divided into two categories: homogeneous cross-

project defect learning and heterogeneous cross-project 

defect prediction [1][4]. 

With limited historical software modules data, the 

concept “Within-Project-Defect–Prediction (WPDP)” 

also didn’t come up with great results. Datasets of 

software projects with partial statistical measures used 

Cross-Project Defect Prediction (CPDP) as a 

countermeasure to overcome WPDP problems [13]. 

Research showed that the poor quality of training data 

used in WPDP gave substandard results. These 

inadequacies of properly trained historical data are a 

hindrance to the detection of upcoming faults in the 

modules, new version projects. CPDP is used to classify 

defect-prone modules obtained from the public datasets 

available [19]. Though CPDP was a major invention, the 

quality of defects in each section that were verified was 

not considered. CPDP is beneficial and effective for fault 

prediction; when research is done on external projects’ 

historical data. CPDP uses separate learning and testing 

datasets, thus avoiding the dependency of data and giving 

unbiased results. 

VI- PREVIOUS LITERATURE REVIEW 

This section focuses on publications that used machine 

language techniques, neural network models, and deep 

learning techniques. 

Sumit Mahapatra et al [7]. In this paper, Advanced 

machine learning capabilities like deep learning are 

studied. Software engineering tasks like code generation, 

fault prediction, defect analysis, code search and API 

sequence learning can use deep learning technology. In 

each category of vulnerability analysis, this study 

summarized prior studies as well as current state-of-the-

art stages and approaches. And the time and effort put 

into it will aid scholars in understanding current best 

practices as well as some well- known strategies. 
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Ning et al [5] Software Fault Prediction techniques use 

unsupervised learning, which is studied in detail by the 

author. For this review, papers from 2000 to 2018 were 

evaluated. The author has completed 49 studies with in- 

depth analysis. In order to obtain more accurate findings, 

the author stressed the use of Unsupervised Learning 

approaches for fault prediction. 

Han Cao et al [4] The challenges with standard machine 

learning, deep learning, and hybrid learning were 

discussed in this work. The author compared and 

contrasted all of the following strategies and 

methodologies. When it comes to network creation and 

implementation, Just-In-Time research is crucial. In the 

world of Just-In-Time research, real-time defect 

prediction is crucial. Deep Learning and Hybrid 

Learning have been shown to enhance prediction rates in 

both cross-project and intra-project scenarios, according 

to research. 

Khuat T et al [20] Here author had used an ensemble- 

based bagging mechanism and SMOTE on imbalanced 

data for Software defect prediction. Metrics like 

Accuracy, Precision, Recall, and F1-score were 

calculated on datasets JC1, KC3, PC1, Ant-1.7, Synapse-

1.2. Results of the experiment showed that combining 

ensemble learning with the sampling techniques 

increased prediction performance. 

Alsawalqah H [20] et al employed a hybrid ensemble 

strategy with several classifiers on 12 failure datasets 

from PROMISE and NASA data repository in this study. 

The goal is to use heterogeneous ensemble approaches to 

study SFP. Precision, Recall, and G-means were used as 

base measures. The research revealed that bagging and 

Adaboost learning techniques gave lesser accuracy of 

predictions compared to ensemble methods proposed by 

the author. 

Rehan Ullah Khan et al (2020) Cross-project defect 

prediction was employed in this study, which frequently 

reuses data from other projects. It works well when the 

data from the training models is more than enough to 

meet the project's requirements. The performance of 

various Machine Learning methods is determined on the 

dataset used to train the prediction model.   Defect 

Induction Changes are also predicted using ML 

techniques. CM1, JM1, KC1, KC2, and PC1 are the five 

modules and repositories used in this work to model the 

outcomes using the PROMISE dataset. We used four 

distinct classifiers to build the dataset: Bayes network, 

Random forest, SVM, and Deep Learning based on F-

measure, which made it more resilient and outperformed 

all other models. On performing various experiments, 

Random Forest and Deep learning work better than 

Bayes network and SVM (on all five datasets). In the 

proposed model of defect prediction, it requires some 

heterogeneous metric values that will give accurate 

predictions. This paper uses state-of-the-art deep 

learning and random forest to conduct a series of 

experiments on five different datasets. Using 10-fold 

cross-validation, the proposed model detects an error 

with 90 percent accuracy. On all five datasets, the 

obtained results show that Random Forest and Deep 

Learning provide more accurate predictions than Bayes 

network and SVM. For more accurate defect detection, 

the author created a Deep Learning classifier. 

Jain M et al [21] Here the author experimented with 

AdaBoost, AdaBoost.M2, RUS Boost, SMOTE Booster, 

MSMOTE Boost, Data Boost using AUC, G-Mean and 

Balance parameters. Results had shown that RUSBoost 

had given best performance in handling imbalanced data. 

The second-best results were given by SMOTEBooste 

followed by SMOTEBoost Ensemble methods. 

Pandey SK [22] and his colleagues’ Deep feature 

representation was adopted by the researchers. On 12 

NASA datasets, the article used stacked denoising auto-

encoders for deep feature representation. The 

performance measurements MCC, AUC, precision-

recall, and f-measure are used in the analysis of bug 

prediction utilizing deep representation and ensemble 

learning approaches. BPDET outperformed AdaBoost, 

Bagging, Random Forest, and Logistic Boost Author had 

built a Deep Learning classifier for more accurate defect 

identification. 

Saifudin A et al [23] The author used Cross-project 

software prediction in this investigation. For 

performance validity on datasets, he defined accuracy, 

true positive rates, false-positive rates, and AUC. The 

bagging method applied which was combined with 

SMOTE had given the best results. Whereas Adaboost 

had not yielded up to the par performance as compared 

to other techniques applied. CM1, M W1, PC1, PC3, 

PC4 were used as experimental data sets from the NASA 

repository by the author. 

Compos J et al [24] In his research, The results of this 

study showed that combining weak learners increased a 

method's overall prediction efficiency. In this work, the 

author used gradient boosting, stacking, and soft voting 

using Decision Tree, Bagging, and Random Forest. 

Analysis of heterogeneous ensembles for online failure 
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prediction was the goal of the study. The experiment was 

conducted on Windows XP with Service Pack 3 (SP3). 

Zhigiang Li et al [25] In this paper, the author discussed 

how to predict heterogeneous software defects. The 

study took into account 30 software defect datasets from 

a variety of software repositories. The AUC, accuracy, 

Recall, and balance variables were used to compare the 

results of two- stage ensemble learning (TSEL), 

Ensemble Multiple Kernel Correlation Alignment 

(EMKCA), and RE Sample with replacement (RES). 

TSEL outperformed the baseline approaches for fault 

classification, according to the results of the output 

research. 

Tong H et al [26] in this paper, He used Ensemble 

Multiple Kernel Correlation Alignment to align 30 

software project datasets (EMKCA). In Heterogeneous 

Fault Prediction approaches, are Under Curve is the 

main differentiator. The findings of the study revealed 

that EMKCA outperformed alternative kernel learning 

and ensemble learning approaches. 

Table1: Comparison of Ml Techniques 

S

N 

Techniqu

e Used 

Data 

Set 

Used 

Advantages Limitations 

1 

Artificia

l Neural 

Network 

NASA, 

AR6, 

MDP 

It has self-

learning 

capability. The 

metric 

relationship 

doesn’t matter 

It can’t handle 

Incorrect/Impr

ecise 

information 

2 

Support 

Vector 

Machine 

NASA, 

AR1, 

AR6 

Better 

prediction using 

a Kernel 

function 

Large software 

metrics are not 

handled 

3 
Decisio

n Tree 

NASA, 

AR1, 

AR6 

More accurate 

results are 

found 

Decision tree 

construction is 

very complex 

4 
Associat

ion Rule 

NASA, 

MDP 

Historical data 

is used for rules 

generation and 

fault prediction 

It requires all 

correct values 

of all metrics 

5 
Clusteri

ng 

NASA, 

MDP 

It is suitable for 

small datasets 

The unlabeled 

dataset is used 

VII-OUTCOME OF LITERATURE REVIEW 

In SFP, no model is perfect. Applying one type of 

algorithm, ensemble methods, or like on any object 

oriented programming project dataset will not generalise 

the prediction strategy. Hence, more research is needed 

for accurate prediction percentages. Using different 

types of projects and more numbers of ML algorithms on 

datasets will give us more predictive fault prediction 

numbers. 

• To obtain better results for SQ, deep learning analysis 

can be used for SFP 

• Hybrid model (cross-project environment) with more 

than one classifier is beneficial for defect prediction. 

 Cross-project SFP models will provide more accurate 

prediction rates. 

• When compared to Bayes Network, Random Forest 

and Deep Learning provide more precise findings. 

• Ensemble Learning could be used for combining 

different positive beneficial features of different 

models (Refer Table 1) 

 

VIII- FUTURE SCOPE 

As the software industry is growing day by day, the 

software’s are becoming more and more complex. These 

complex software’s are not only difficult to debug but 

also makes a person scratch his head when classifying 

the modules on the basis of faulty or else non-faulty. 

Table2: Common Metrics used in Classification Models 

Metric Formula Particular 

Accuracy  

 

Overall 

Performance 

measure of model 

used 

Precision  

 

Positive 

Predictions 

accuracy 

Recall  

 

Positive Sample’s 

Coverage 

F1 Score 

 

 

Hybrid Metric 

Usefulness Score 
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The process of classification was used in the early times 

of software development. Here, the aim of the research is 

to use fault prediction in a module rather than classifying 

them into categories. 

We can used Ensemble Learning to forecast the 

number of errors in a dataset using different models, 

such as classifiers or experts. Linear Regression, 

random forest, SVM, Bagging, Boosting, MLP, and 

other fault prediction approaches have been employed. 

The major goal is to find the number of defects in 

certain modules with a high rate of prediction so that 

future debugging can be simplified [11]. To obtain 

better results for Software Quality, deep learning 

analysis is used for SFP to depict faults in the early 

stages of  SDLC using Hybrid Model. (Fig.4) 

IX- FURTHER DISCUSSION & CONCLUSION 

In this paper, we reviewed various classical testing 

types, discussed SDM, SFP and models. We also looked 

into many parts of the software failure prediction 

process. We have observed that maximum review papers 

are based on Machine Learning Techniques, but the 

evidence is not included to support the result findings. 

Most recent research had used only one type of 

prediction model with reference to the object-oriented 

paradigm. Because of the variability in accuracy and 

false prediction results, it became vital to develop 

supervised, unsupervised, or deep learning methods that 

can close the prediction percentage gap and deliver more 

accurate, precise, and timely results. This is used as 

motivation for innovating a new hybrid model with 

cross- reference predictions. 

Fig.5 Proposed Methodology for software bug prediction 

REFERENCES 

[1] L. K. S. R. Y. Suresh, "Statistical and Machine Learning 

Methods for Software Fault Prediction Using CK Metric 

Suite:A Comparative Analysis," ISRN Software 

Engineering, vol. 2014, p. 15, 2014.  

[2] L. Z. Xiao-Yuan, "Heterogeneous defect prediction with 

two-stage ensemble learning," Springer Link, 2019.  

[3] R. Wahono, "A Research Trends, Datasets, Methods and 

Frameworks,Systematic Literature Review of Software 

Defect Prediction," Journal of Software Engineering, vol. 

1, no. 1.  

[4] K. T. Tung and L. M. Hanh, "Evaluation of Sampling-

Based Ensembles of Classifiers on Imbalanced Data for 

Software Defect Prediction Problems," Springer Nature, 

2020.  

[5] P. Sasankar, "Analysis of Test Management, Functional 

and Load Testing Tools," International Journal of 

Scientific Research in Computer Science, Engineering and 

Information Technology, vol. 1, no. 1, 2016.  

[6] S.Saharudin, K.Wei and K.Na, "Machine Learning 

Techniques for Software Systematic Review," Journal of 

Computer Science, 2020.  

[7] S.Mahapatra and S.Mishra, "Usage of Machine Learning 

in Software Testing," Automated Software Engineering: A 

Deep Learning-Based Approach. Learning and Analytics 

in Intelligent Systems-Springe, 2020.  

[8] R.U.Khan, S.Albahli, W.Albattah and M.Khan, "Software 

Defect Prediction Via Deep Learning," International 

Journal of Innovative Technology and Exploring 

Engineering, 2020.  

[9] R.Dabrowski and B.Wojcicki, "Applying Machine 

Learning to Software Fault Prediction," e-Informatica 

Software Engineering Journal, pp. 199-216, 2018.  

[10] O.A.Qasem, M.Akour and M.Alenezi, "The Influence of 

Deep Learning Algorithms Factors in Software Fault 

Prediction," IEEE Access, vol. 8, 2020.  

[11] O.A.Qasem and M.Akour, "Software Fault Prediction 

Using Deep Learning Algorithms," International Journal 

of Open Source Software and Processes,, 2019.  

[12] N.Li, M.Sheperd and Y.Guo, "A systematic review of 

unsupervised learning techniques for software defect 

prediction," Information & Software Technology, 2020.  

[13] S. P. a. R. Mishra, "BPDET: An effective software bug 

prediction model using deep representation and ensemble 

learning techniques," Science Direct, 2020.  

[14] M.Jain, "Handling imbalanced data using ensemble 



Impact Factor-4.013               e-ISSN: 2581-6667 

International Journal of Engineering and Creative Science, Vol. 5, No. 9, 2022 
www.ijecs.net 

 

15 
 

learning in software defect prediction," in International 

Conference on Cloud Computing, 2020.  

[15] L.Perreault, S.Berardinelli, C.Izurieta and J.Sheppard, 

"Using Classifiers for Software Defect Detection," in 

International Conference on Software Engineering and 

Data Engineering, 2017.  

[16] A. T. a. S. Kini, "Periodic Developer Metrics in Software 

Defect Prediction," in International Working Conference 

on Source Code Analysis and Manipulation, 2018.  

[17] H.Cao, "A Systematic Study for Learning-Based Software 

Defect Prediction," IOP Conf. Series: Journal of Physics: 

Conf. Series, 2020.  

[18] B. L. a. W. S. H. Tong, "Kernel Spectral Embeding 

Transfer Ensemble for heterogeneous defect prediction," 

in IEEE Transactions on Software Engineering, 2019.  

[19] G.Tassey, "The Economic impacts of inadequate 

infrastructure for software testing," National Institute of 

Standards and Technology, 2020. 

[20] F.Salfner and M.Malek, "A survey of Online Failure 

Prediction Methods," ACM Computing Surveys, 2010.  

[21] C.Prabha and N.Dr.Shivkumar, "Software Defect 

Prediction Using Machine Learning Techniques," in 

International Conference on Trends in Electronics and 

Informatics, 2020.  

[22] A.Saifudin, S.Hendric and B.Soewito, "Tackling 

imbalanced class on cross-project defect prediction using 

ensemble smote," 2019.  

[23] A.Panichella, R.Oliveto and A.Lucia, "Cross-Project 

Defect Prediction Models-L’Union Fait la Force," CSMR-

WCRE, pp. 164-174, 2014.  

[24] N. Anwar and S. Kar, "Review Paper on Various Software 

Testing Techniques & Strategies," Global Journal of 

Computer Science and Technology, vol. 19, 2019.  

[25] A. Abubakar, J. AlGhamdi and M. Ahmed, "Can Cohesion 

Predict Fault Density," in IEEE, 2006.  

 


