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Abstract – In view of the rapid proliferation which this deepfake technology has reached in creating highly realistic
manipulated media, issues have been raised across major sectors: media integrity, security, and public trust. Although
many reviews exist around deepfake detection, most of them limit their scope to either specific techniques or datasets,
offering little or no comprehensive comparison of the many different methods now available for this process. Most of the
reviews also lack discussions on computational efficiency or adaptability concerning real-world detection systems; hence,
theoretical and practical understanding of the technologies could be potentially at a deficit. This work considers a critical
review of state-of-the-art deepfake detection methodologies that offer comprehensive performance comparison based on
efficiency and the scope of application. Advanced machine learning techniques reviewed in this work involve ensemble
deep learning combined with optical flow, blockchain-based federated learning combined with CNN and SegCaps, and new
real-time solutions such as plasmonic resonanceenhanced biosensors. Additionally, approaches that will merge human
cognitive skills with machine learning and neurocognitive testing for the investigation of deep fake audio are examined in
order to demonstrate the impact of human factors on detection performance. Methods with light-weighted architectures,
such as shallow vision transformers, and schemes of multimodal detection, such as the cross-modal attention network, were
also discussed for their efficiency in resource-constrained environments and detection along several dimensions of
deepfakes. In fact, the proposed review would compare the accuracy, efficiency, and scalability of these methods; it would
also critically evaluate their adaptability against evolving deepfake techniques and adversarial conditions. This work has
great implications; it puts into perspective a unified framework for understanding the current capabilities and limitations
of deepfake detection systems. It holistically presents the emerging trends to researchers and practitioners for making
better decisions in developing robust, scalable, and efficient solutions toward securing the authenticity of digital media
sets.
Keywords: Deepfake Detection, Machine Learning, Federated Learning, Optical Flow, Real-Time Detection, Process

I- INTRODUCTION

Within the last decade, advances in deep learning and
artificial intelligence have gone a long way toward
improving media creation, one very strong development
being that of the so-called "deepfakes." Deepfakes are
media-that is, images or videos-created with advanced
deep learning algorithms which superimpose faces,
morph audio, or generate completely fabricated content.

While deepfake technology has opened up a whole new
frontier in entertainment, art, and content creation, this
technology has also been misused in a very serious way
about privacy, security, misinformation, and digital
content integrity. Deepfakes can also be maliciously
used to deceive individuals, manipulate public opinion,
or even threaten national security through the creation of
political speeches or news events. While deepfake
technology becomes increasingly accessible-through the
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rise of user-friendly AI tools and platforms that require
little to no prior technical knowledge-detection of these
forgeries has turned into a field of crucial research.
Classic detection methods using forensic image analysis
or manual verification, for example, are far insufficient
as modern deepfakes may become indistinguishable
from genuine content by the human eye. The high
fidelity of these synthetic media has rendered
conventional detection methods obsolete; hence, the
need for the development of advanced automated
systems that can find the deepfakes at scale.

Fig. 1. Deepfake Detection Model Process
A number of machine learning-based methods that span
from CNN models designed to operate at a frame level
have so far been adopted for the addressed problem of
deepfake detection. There are more sophisticated
approaches that take into consideration temporal
inconsistencies in the video sequences. Indeed, the
availability of benchmark datasets like FaceForensics++
and that from the Deepfake Detection Challenge, DFDC,
has fostered comparative analysis among them.
Nevertheless, all these efforts have not yet resulted in
any single technique emerging as a panacea for detecting
these deepfakes of all kinds. Given the variability in
methods for generating deepfakes, from image
manipulation to audio alteration and video splicing,
multi-modal approaches for detection from various
forms of synthetic content have become quite critical.

Therefore, most recent studies have considered
innovative methodologies in the improvement of
performance detection. This fact is demonstrated, for
instance, by the performance of optical flow methods,
which capture the motion of pixels between frames to
reveal small inconsistencies in deepfake videos that are
difficult to catch in frame-level analyses. FL based on
blockchain has also been presented as a method for
training deepfake detection models in a manner that
ensures the privacy of decentralized datasets while still
enhancing model robustness. On the other hand,
plasmonic resonance-based biosensor technologies have
been in a position to detect deepfakes in real time by
detecting anomalies in optical signatures.
Notwithstanding these advances, the area remains so
dynamic, with day-in-and-day-out researchers coming
up with ways of trying to tame the ever-increasing
sophistication of algorithms used in the generation of
deepfakes.
One of the major challenges with current deepfake
detection is scalability. Many state-of-the-art deep
models require heavy computational resources and are
not suitable for real-time tasks or simple deployment on
resource-constrained devices. Hence, lightweight
architectures that provide a good balance between
detection performance and low computational overhead
shall be considered, including shallow vision
transformers. These latter models reduce the number of
parameters and FLOPS applied, finding their perfect fit
for real-world applications without significant loss of
accuracy. Another very active research area involves
integrating human cognitive capabilities into deepfake
detection systems. Although machines are able to
process voluminous data and find patterns that are
invisible to the human naked eye, the combination of
algorithmic detection with human intuition has proved
effective in certain cases. Indeed, it has been shown that
when given some form of statistical metadata or other
contextual clues, the rate of correct identification of
deepfakes by humans increases significantly. This hybrid
approach to deepfake detection-a fusion of human and
machine intelligence-consigns a new frontier in the fight
against deepfakes, especially in high-stakes scenarios
such as elections or judicial processes.
The implications of detecting deepfakes span much more
than academia. Deepfakes have critical cybersecurity
consequences: from a direct hit on the credibility of
digital content to journalism and financial markets,
where entire industries can be disrupted. Fake news
generation, impersonation of a person, and simulation of
events stoke moral questions about the menace of
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deepfake technology misapplication. Also, the
jurisprudence of deepfakes has just started to take shape,
as many countries have to grapple with the task of
making laws and policies regarding the production and
dissemination of this form of media. Urgency in
preventing the spread of harmful content underlines the
need for powerful, scalable solutions for detecting
deepfakes at the platform level. While this comes with
the fact that deepfake types range from visual to auditory
forgeries, methods for the detection should also be
multifaceted. Though most of the models for detection
studies focus on manipulation of the face, recent trends
have shown the growing prevalence of audio deepfakes
where AI-generated voices impersonate real people. This
adds another layer of complexity because detecting an
audio deepfake requires completely different sets of
features and techniques than image-based models.
Spectral analysis, MFCC, and RNN have become key in
recent times for analyzing deepfake audio content. The
domain of deepfake detection has turned multivariate
with the integration of expertise in computer vision,
audio processing, and natural language understanding.
Therefore, this review tries to present a comprehensive
comparison of different detection methods
corresponding to state-of-the-art due to the imminent
threat of deepfakes. This paper aims to establish which
techniques are more promising for further research and
practical implementation by analyzing their performance
on various datasets considering criteria such as accuracy,
computational efficiency, scalability, and adaptability.
Additionally, this review underlines some lacunas in the
current literature and provides insight into unresolved
challenges related to deepfake detection. The ultimate
goal of this work is to ultimately give a fine
understanding to the researchers and practitioners about
the deepfake detection landscapes. This review
contributes to the ongoing effort of securing the integrity
of digital media and preventing malicious use of AI-
generated content by showing both the strengths and
limitations of the existing methods. While deepfake
technology is only bound to get better, it is only by
effective detection systems that will be increasingly
necessary, hence going hand in glove with the cutting-
edge research by way of interdisciplinary work, that this
may be considered valid for the process. The paper is
organized as follows: section II presents Review of
Existing Models used for Parkinson Analysis Section
III outlines the state of the art on Transmitarray covering
in particular transmitarray for antenna beamsteering,
polarization control and hybrid transmitarray, that enable
both features simultaneously. Finally, the main
conclusions are drawn in section IV.

II - MOTIVATION AND CONTRIBUTION
The malicious use of deepfakes within domains of
politics, media, and personal privacy is an ever-growing
concern, serving as the main motivation for this work.
Deepfakes are not simply interesting technical minutiae;
their impact can be quite serious when related to the
erosion of public trust in the integrity of digital
information. In turn, the more this technological
advancement drives the generation of very realistic
synthesized content, the more challenging it becomes to
detect these deepfakes. Most of the existing detection
systems are tailored to specific types of deepfakes,
including the manipulation of faces and splicing of
videos, hence limiting their adaptability to other forms
which deepfake forgery may take, especially in the
domains of audio, voice, and multimodality. Besides
that, the computational cost of running many of such
detection systems is hardly applicable in real time,
especially in resource-constrained environments.
The paper reviews and makes a comparison of different
deepfake detection methodologies in detail. Whereas
other reviews focus on narrow areas, like a technique or
dataset, this work presents a holistic view of the state-of-
the-art by covering a wide range of approaches, starting
from machine learning-based using CNNs and
transformers to more innovative ones involving
blockchain-based federated learning and integrated
biosensors for real-time analysis. The review identifies
the limitation of each method, emphasizing major trade-
offs among some involving accuracy, computational
efficiency, and scalability. It assists in the identification
of lacunars in the literature and hence opens frontiers for
development of more adaptive and robust detection
systems.
The contribution of this paper goes beyond a simple
comparative analysis; it frames both the technical and
practical limitations of the current detection frameworks,
hence offering significant insights for both researchers
and practitioners. Novel methods included herein, such
as the ensemble learning based on optical flow and the
cross-modal attention networks, provide new light
regarding how multi-modal deepfakes should be
approached. This review also covers the real-world
deployments of deepfake detection systems at scale with
respect to concerns regarding privacy, heterogeneity in
data, and their legal landscape. In general, the
contribution provides a broad roadmap of future research
in this area and hence makes useful suggestions for
solving practically the challenges imposed by the rapid
development of deepfake technology.
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. III- REVIEW OF EXISTING MODELS USED
FOR PARKINSON ANALYSIS

The rapid development of deepfake technologies has
brought huge challenges across many industries; the
main impact on digital security, misinformation, and
personal privacy is very large. The literature review
covers major developments in advances and detection
techniques developed to fight deepfakes that use
artificial intelligence for highly real synthetic media.
A. Emergence of Deepfakes and its Implication
The term "deepfake" symbolizes hyper-realistic media;
this generally can take the form of images or videos
created through deep learning algorithms in such a
manner that these can easily masquerade as real people.
Work in [1] identified the broad diffusion of such
content across different media channels, creating
disruptions in society with respect to identity theft, social
engineering, and political disinformation. The increased
proliferation of deepfakes challenges human cognition in
that most of this manipulation of media information is
not that easily detectable by the naked eye. This goes to
show the urgent need for more sophisticated methods of
detection that can establish whether some media
information is real or fabricated.
B.Deepfake Detection Techniques
Many of them include detection methods, from deep
learning-based to new hardware implementations. One
of the major works in the deepfake detection domain is
the ensemble deep learning-based system proposed in
[1], using optical flow techniques for differentiating
between real and fake images, which reported an
accuracy of 86.02% on the DeepFake subset of the
FaceForensics++ dataset. That brings out innovation in
optical flow in apparent motion extraction, a
breakthrough in bringing up the accuracy of detection.
However, this study has pointed out the deficiency of
such techniques for large-scale, practical detection of
deepfakes. Another promising approach is deepfake
analysis based on blockchain and federated learning.
According to [2], one can combine FL with CNN and
capsule networks for training global models much more
robustly with preservation of anonymity of data sources.
With the integration of blockchain, this model is more
capable of handling heterogeneity and preserving data
confidentiality, with 6.6% improvement in accuracy
compared to six benchmark models. Indeed, this is a
federated approach which mitigates the challenge of data
privacy, very often a limitation in many centralized
deepfake detection systems. Another frontier in the
detection technology is the integration of biosensors,

shown in [3]. They proposed a biosensor enhanced by
plasmonic resonance, together with machine learning
algorithms that capture subtle anomalies in digital
content. This biosensor provides real-time detection at
an accuracy of 98.7% and is one of the most effective
tools within the deepfake detection landscape of today,
with adaptive learning capabilities against evolving
deepfake generation techniques. The authors, in this
work, have investigated the interplay of human cognitive
skills with machine learning for the detection of
deepfakes. According to their experiments, human
recognition of deepfakes, when combined with machine
learning models, could achieve impressive detection
accuracy up to 98.3%. It is indeed a hybrid approach:
intuition by humans and precision by algorithms. This
complements a purely machine-based detection systems.
C.Deep Learning Methods and Model Optimization
Most of the recent works emphasize deep learning-based
approaches for deepfake detection and focus on CNNs
and attention-based networks. The work in [5] looks
deep into neurocognitive responses to audio deepfakes; it
shows that the cortico-striatal network of the brain plays
a critical role in decoding deepfake-level audio
manipulations. This insight opens avenues toward
neurocognitive-based detection frameworks, which may
themselves be used to enhance further human resistance
against deepfake identity spoofing. In [6], it is proposed
that a CNN-based deepfake detection framework
performs on frame-level analysis with the utilization of
vision transformers to draw out features. They have
proposed a model that performs detection accuracy at
97% and, thus established the efficiency of CNN-based
architectures to handle big data sets such as
FaceForensics++ and DFDC process. Simultaneously,
attention mechanisms, cross-modal strategies are turning
popular. In that, a novel architecture of cross-modal
attention was proposed, which effectively captured the
fake content of both audio and video modalities. The
results showed that the Bidirectional Recurrent
Convolutional Network used in the current study
remarkably enhanced the detection performance,
especially for multimodal deepfakes, which normally
would be hard to detect because they need more sources
of manipulated data samples. In resource-constrained
environments, shallow learning models have also
emerged as alternatives. Indeed, work in proposed a
shallow vision transformer for deepfake detection, which
leverages multi-head attention for the localization of
manipulated sections within an image. Although it is a
shallow model, it can achieve accuracy rates of 92.15%
and 88.52% on Real Fake Face and RFFD datasets,
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respectively. Thus, efficient lightweight models can
execute comparably well with deep learning systems that
are computationally intensive in certain scenarios.

Table 1. Empirical Review of Existing Methods
Reference Method Used Findings (in

context of
Deepfake
Analysis)

Strengths

[1] Ensemble deep
learning-based system
using optical flow
techniques.

Achieved
accuracy of
86.02% on the
DeepFake subset
of
FaceForensics++
dataset by
detecting
apparent motion
in pixels,
enhancing real
vs. fake image
differentiation.

Novel optical
flow approach
leading to more
accurate
motion
extraction and
detection.

[2] B l o ck ch a i n - b a s e d
federated learning
combined with
SegCaps and CNN,
utilizing transfer
learning and data
normalization.

Enhanced global
model training
for deepfake
detection with
an accuracy
increase of 6.6%
over six
benchmark
models and a
5.1% AUC
improvement in
process.

Preserves data
source
anonymity
while
addressing data
heterogeneity,
promising for
global
collaborations.

[3] Plasmonic resonance-
enhanced biosensor
integrated with CNN
for real-time detection.

Achieved 98.7%
detection
accuracy with
r e a l - t i m e
analysis and low
false
positive/negative
rates.

High
sensitivity,
rapid response
time, and
adaptive to
evolving
deepfake
techniques.

[4] Machine learning
combined with human
cognitive abilities to
classify videos as fake
or real.

Achieved 98.3%
accuracy in
predicting
human
evaluations of
video
authenticity,
blending
cognitive
analysis with

First approach
to integrate
human
cognition and
algorithmic
deepfake
detection.

algorithmic
detection

[5] Neurocognitive
sensitivity testing
through audio
deepfake identity
spoofing.

Identified brain
regions involved
in deepfake
voice detection,
offering insights
into human
vulnerability and
resilience

Expands
understanding
of human
deception by
deepfakes at
the
neurocognitive
level.

[6] Deep learning-based
detection using CNN
and vision
transformers on
FaceForensics++ and
DFDC datasets.

Achieved 97%
accuracy in
identifying fake
images and
videos using a
multi-
component CNN
and vision
transformer
approach

Strong
performance
with multiple
metrics such as
precision and
F1-score.

[7] Evaluation of prior
information’s effect on
deepfake speech
recognition and
deepfake audio quality
metric.

Found that prior
information and
audio quality
significantly
influence human
ability to detect
deepfake speech.

Novel
approach
simulating real-
world scenarios
of
unpredictable
deepfake
exposure.

[8] Classification
algorithms and
ensemble model
applied in the
frequency domain to
detect low-resolution
deepfakes.

Achieved up to
99.97%
detection
accuracy for
high-resolution
deepfakes using
random forest
and other
classification
methods.

Extremely high
detection rates,
especially with
low-resolution
deepfakes, and
robust cross-
validation.

[9] Cross-modal attention
architecture with a bi-
directional recurrent
convolutional network.

Demonstrated
promising
performance in
recognizing
m u l t i - m o d a l
deepfakes by
capturing
spatial-temporal
deformations in
audio and video.

Effective in
mu l t i -moda l
deepfake
detection,
addressing
multiple fake
content
modalities.

[10] Hybrid ResNext
50 + LSTM
architecture using

Outperformed
other deepfake
detection models

Effective in
handling large
datasets and
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CNN and Big Data
techniques.

like
‘FakeCatcher’
and ‘Face X-ray’
with better
resource-
efficiency and
detection
accuracy.

temporal
inconsistencies,
optimized for
r e a l - w o r l d
applications.

[11] Shallow vision
transformer model for
constrained resource
environments.

Achieved
accuracy of
92.15% on Real
Fake Face
dataset with
reduced model
parameters and
FLOPS.

Efficient for
use in
constrained
environments
due to fewer
resources
required.

[12] Ensemble-based D-
Fence framework
using uni-modal and
c r o s s - m o d a l
classifiers.

Achieved 92%
detection
accuracy across
facial and vocal
manipulations,
with resilience
to novel
adversarial
attacks.

Robust against
mu l t i -moda l
deepfake
manipulations,
adaptable to
adversarial
conditions.

[13] Remote
Photoplethysmography
(rPPG) and DeepPhys
model for biological
signal detection in
videos.

Identified
biological
signals in
deepfake videos,
demonstrating
higher
availability than
traditional rPPG
methods.

Incorporates
physiological
data into
detection,
expanding
detection
methods
beyond visual
and audio.

[14] Unified framework
using Mel-Frequency
Cepstral Coefficients
(MFCC) and spectral
contrast features for
audio deepfakes.

Achieved
98.52%
detection
accuracy using
MFCC
DeltaDelta
features with
spectral contrast
in audio
recordings.

High accuracy
in deepfake
audio
detection, with
efficient ANN
architecture.

[15] DefakeHop++ model
using layered detection
approach for platform
responsibility and
government
intervention process.

Proposed multi-
layered platform
policies and AI
algorithms for
protecting
democratic

Emphasizes
governance and
platform
responsibility
in addition to
technical

processes
against
deepfakes.

detection.

[16] Fusion of hand-crafted
and deep-learned
features for exposing
deepfakes in video
datasets.

Demonstrated
effective
detection
performance
across Celeb-
DF, DFDC, and
FaceForensics++
datasets using
feature fusion.

Combines the
strengths of
traditional and
deep-learning
methods for
improved
accuracy.

Fig. 2. Accuracy Analysis
D.Multi-Modal Deepfake Detection and Emerging
Threats
Deepfake content spans many different media, including
facial expressions, speech, and body movements. So, the
research issue is very complex. The framework
developed in [12] solved this challenge; hence, it
integrated the classifiers of uni-modal and cross-modal
for manipulation detection over the facial, vocal, and
textual elements. For the D-Fence layer, the detection
accuracy is as high as 92%, whereas the adversarial
attack scenarios outperformed the existence of multi-
modal detection frameworks. Another critical aspect of
multi-modal deepfakes involves the audio domain. Work
in [14] proposed a unified framework to detect deepfake
audio by fusing MFCC and spectral contrast features.
The model had optimized the feature extraction process
and utilized a lightweight ANN architecture that
achieved accuracy as high as 98.52% and proved the
system robust enough for distinguishing between
original and deepfake audio recordings. Despite
advancements in detecting deepfakes, several challenges
persist. Improved deepfake generation techniques keep
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continuously raising the bar for detection models by
forcing them to stay ahead of novel attacks. This work in
[13] exposed the weakness of the current detection
frameworks and suggested that more robust biometric
signal analysis, such as Remote Photoplethysmography
(rPPG), is required to detect physiological
inconsistencies in manipulated videos. Therein, the need
for more robust legal frameworks and platform-level
interventions was pointed out in [15], on the role that
government-industry cooperation could play in
regulating deepfake dissemination during critical periods
of election time, for example. Future research directions
should now focus on developing hybrid detection
systems by combining machine learning and cognitive
science with sensor technologies in real time. While
deepfake generation develops in a more sophisticated
direction, especially in the low-resource environment,
detection models have to grow hand-in-hand. The work
in [16] demonstrated the potential of fusing hand-crafted
and deep-learned features and thus provided a promising
direction toward future multi-modal deepfake detection
systems.
IV - STATISTICAL COMPARATIVE RESULT

ANALYSIS
This section presents a comparison of various deepfake
detection methods, considering their efficiency and
performance for different metrics of detection. Several
papers were chosen; several techniques are used in each:
from deep learning models and hybrid models that use
both machine learning and blockchain to new
approaches, such as biosensors for real-time analysis.
This review makes a comprehensive comparison among
various methods developed for deepfake content
detection concerning the effectiveness of detection based
on key performance indicators like accuracy, false
positive rates, and adaptability. Observations in the
paper provide a view of the strengths and limitations of
each technique, therefore showing their various
applicative contexts in the deepfake analysis.

Table 2. Statistical Review of Existing Methods

Reference Method Used Results (In
Numerical
Form)

Efficiency of
Deepfake
Analysis

[1] Ensemble deep
learning-based system
using optical flow

Accuracy:
86.02%
(DeepFake
subset),
85.7%
(FaceSwap

Moderate;
suitable for
image-based
analysis

subset)

[2] B l o ck ch a i n - b a s e d
federated learning with
SegCaps and CNN

Accuracy:
6.6%
improvement
over
benchmarks,
AUC: 5.1%
improvement

High;
performs
well in
handling
large datasets

[3] Plasmonic resonance-
enhanced biosensor
integrated with CNN

Accuracy:
98.7%, FPR:
1.2%, FNR:
0.5%,
Response
time: 0.8s

Extremely
high; excels
in real-time
detection

[4] Human cognitive
abilities combined
with machine learning

Accuracy:
98.3% in
predicting
video
authenticity

High;
effective
when human
cognition is
included

[5] Neurocognitive testing
with deepfake voice
matching

Intermediate
deception
rate; accuracy
of brain
signal
decoding is
inferred

Moderate;
focuses on
auditory
deepfakes

[6] CNN with vision
transformer

Accuracy:
97% (CNN),
85% (CViT
model)

High for
CNN;
moderate for
CViT

[7] Prior information
impact and audio
quality metric for
speech deepfakes

Detection
accuracy
highly
dependent on
prior

Moderate;
effective for
auditory
deepfakes
but lacks
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knowledge;
approximately
8 0 - 9 0 %
accuracy in
different
conditions

multimodal
capabilities

[8] Classification
algorithms with
ensemble model

Accuracy:
99.97%
(high-
resolution),
98.27% (low-
resolution),
98.72%
(mixed
datasets)

Very high;
excels in low
and high-
resolution
detection

[9] Cross-modal attention
architecture for audio
and video

Accuracy:
~90%
(approx.)

High;
handles
multi-modal
deepfakes
effectively

[10] ResNext 50 + LSTM
with Big Data
techniques

Accuracy:
Outperforms
competitors,
resource-
efficient

High;
excellent
balance of
efficiency
and
performance

[11] Shallow vision
transformer

Accuracy:
92.15%
(RFF),
88.52%
(RFFD)

High;
optimized for
constrained
environments

[12] D-Fence framework
with uni-modal and
cross-modal classifiers

Accuracy:
92% under
adversarial
attacks

High;
resilient to
adversarial
conditions

[13] Remote
Photoplethysmography
(rPPG) and DeepPhys

High
availability
for biological

High;
innovative
for

signal
detection

physiological
deepfake
detection

[14] Unified framework
using MFCC and
spectral contrast for
audio deepfakes

Accuracy:
98.52%

Very high;
excellent for
audio
deepfake
detection

[15] DefakeHop++ layered
model

Effective in
platform-wide
detection
during
elections

Moderate;
applicable
for platform-
level
interventions

[16] Hand-crafted and
deep-learned feature
fusion

Accuracy:
~90% across
datasets

High;
performs
well with
feature
fusion

Fig. 3. Model’s Distribution of Accuracy Levels
In this comparative review, various deepfake detection
methods are discussed; all of them have better
performance compared to others in certain scenarios.
Those models that combine multiple data modalities-for
example, cross-modal architectures or multi-feature
ensembles-exhibit high accuracy with different datasets
and samples. However, resource requirements and
computational complexity are among certain
counterbalancing factors, especially for much more
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sophisticated technologies, which also include
blockchain-based federated learning and real-time
biosensors. Although lightweight models, like shallow
vision transformers, do present workable solutions in
constrained environments, they inherently have to give
away some degree of accuracy for the benefit of speed
compared to deep learning.

V- CONCLUSION & FUTURE SCOPES
This paper reviewed state-of-the-art deepfake detection
methods, indicating a remarkable contribution toward
fighting the evolution of synthetic media. Several
models were reviewed ranging from classical deep
learning methods like CNNs and vision transformers to
more novelty approaches involving blockchain-based
federated learning to plasmonic resonance-enhanced
biosensors. Among these, it is quite fair to say that no
single technique is applicable for a wide range of
deepfake types, from facial manipulations to audio
deepfakes, and even multimodal forgeries. However,
some models perform better in context because they
were intrinsically designed and optimized for those
contexts. For example, CNN-based models have
remained prevalent for image and video-based detection
of deepfakes. That makes them very effective in
detecting facial manipulations, especially for extracting
intrinsic features from visual content. Notably, some
methods, like ensemble deep learning with optical flow
techniques, demonstrate superior performance for
motion-based analysis and therefore would be well-
suited for applications where temporal consistency in
videos is one of the key indicators of deepfake content.
Moreover, performance raises by combining the usage of
CNNs with temporal networks like LSTMs or hybrid
architectures such as ResNext 50 + LSTM [10]. The
latter is very suitable for real-world applications in
which a video is required to be analyzed fast enough,
like immediate video recognition. Models such as these
are very useful in media and social networks, where
runtime verification of content is highly desired. In
contrast, blockchain-based federated learning models
allow a high amount of value to privacy-preserving and
decentralized model training of a use case. Such
techniques will work well in highly sensitive
environments, like healthcare and government
applications. Using federated learning, these models are
enabled to train on distributed datasets with leakage of
sensitive information. This method also enhances model
robustness, considering many sources of data improve its
generalizability via various kinds of deepfakes.
Biosensor-based deepfake detection models, in turn,
proposed by [3], allow excellent performance of

deepfake detection in real time, especially in
applications related to security and surveillance. Such
models are performing very well in environments where
detection needs to be done right away, as their
embedding of plasmonic resonance technology provides
the capacity for high-sensitive processing of visual
anomalies at a fast pace in the process.
Such a shallow architecture, such as a shallow Vision
Transformer, is helpful in resource-constrained setups
where computational efficiency is prioritized with no
significant compromise in the accuracy of detection.
These light models reduce computational cost due to
fewer parameters and FLOPS, hence ideal to be used for
mobile or edge computing applications. While they may
not achieve the same level of accuracy as more complex
deep learning architectures, efficiency is certainly a
value that they hold in real-world scenarios where
scalability with low-latency detection is required.
Models based on cross-modal attention mechanisms also
bear increasing relevance. They provide robust multi-
modal deepfake detection and handle audio and visual
data together powerfully. These models play a crucial
role in digital forensics, for example, where multi-model
deepfakes are one of the most difficult challenges since
the analysts have to analyze multiple streams of
information concurrently. Although significant
enhancement has been achieved so far, challenges
persist, especially concerning generalization and
adaptability. Considering the continuous evolution in
techniques for generating deepfakes, one avenue related
to future research deals with how effective models of
detection can remain against new and more sophisticated
forgeries. In addition, the increasing prevalence of
adversarial attacks also poses a great challenge, since
most of the existing detection models are much affected
under adversarial conditions. Future research may lie in
developing more attack-resilient models by
incorporating methods of adversarial training or robust
feature extraction process.
Besides that, there is great scope for multi-modal
detection frameworks that integrate data from multiple
sources, such as audio and video, alongside textual
information. This would definitely be crucial in dealing
with deepfakes spanning multiple domains, given the
fact that single-modality detection models are already
not good enough for complex forgeries. Another major
future scope of the process is the investigation into real-
time deepfake detection systems, mainly for live
streaming platforms and social media. Real-time
analysis, in particular, acquires much significance in
view of fast dissemination of fake content online, which
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requires speedy and efficient detection solutions to
operate on live data samples. In a nutshell, deepfake
detection model analysis underlines the importance of
context-specific solutions. While CNN-based models
continue to dominate in the landscape of visual deepfake
detection, more specialized models involving federated
learning and real-time biosensors offer different
advantages with respect to privacy-centric and real-time
applications, respectively. This includes lightweight
models such as shallow transformers that may provide
scalable solutions to resource-limited environments,
while cross-modal approaches will be ever more
necessary with multi-model deepfakes. The future of
deepfake detection will involve integrating these various
techniques and further underlines the need for adaptable,
multi-modal, resilient detection systems that will evolve
in concert with rapid improvements in deepfake
generation technologies.

REFERENCES
[1] Vashishtha, S., Gaur, H., Das, U. et al. Optifake: optical

flow extraction for deepfake detection using ensemble
learning technique. Multimed Tools Appl (2024).
https://doi.org/10.1007/s11042-024-18641-x

[2] Heidari, A., Navimipour, N.J., Dag, H. et al. A Novel
Blockchain-Based Deepfake Detection Method Using
Federated and Deep Learning Models. CognComput 16,
1073–1091 (2024). https://doi.org/10.1007/s12559-024-
10255-7

[3] Maheshwari, R.U., Kumarganesh, S., K V M, S. et
al. Advanced Plasmonic Resonance-enhanced Biosensor
for Comprehensive Real-time Detection and Analysis of
Deepfake Content. Plasmonics (2024).
https://doi.org/10.1007/s11468-024-02407-0

[4] Salini, Y., HariKiran, J. DeepFake Videos Detection
Using Crowd Computing. Int. j. inf. tecnol. (2023).
https://doi.org/10.1007/s41870-023-01494-2

[5] Roswandowitz, C., Kathiresan, T., Pellegrino, E. et
al. Cortical-striatal brain network distinguishes deepfake
from real speaker identity. CommunBiol 7, 711 (2024).
https://doi.org/10.1038/s42003-024-06372-6

[6] Soudy, A.H., Sayed, O., Tag-Elser, H. et al. Deepfake
detection using convolutional vision transformers and
convolutional neural networks. Neural
Comput&Applic (2024). https://doi.org/10.1007/s00521-
024-10181-7

[7] Malinka, K., Firc, A., Šalko, M. et al. Comprehensive
multiparametric analysis of human deepfake speech
recognition. J Image Video Proc. 2024, 24 (2024).
https://doi.org/10.1186/s13640-024-00641-4

[8] Pandey, M., Singh, S., Malik, A. et al. Detecting low-
resolution deepfakes: an exploration of machine learning
techniques. Multimed Tools Appl 83, 66283–66298
(2024). https://doi.org/10.1007/s11042-024-18235-7

[9] Asha, S., Vinod, P. & Menon, V.G. A defensive attention
mechanism to detect deepfake content across multiple
modalities. Multimedia Systems 30, 56 (2024).
https://doi.org/10.1007/s00530-023-01248-x

[10]Kumar, N., Kundu, A. Cyber Security Focused Deepfake
Detection System Using Big Data samples. SN COMPUT.
SCI. 5, 752 (2024). https://doi.org/10.1007/s42979-024-
03105-8

[11]Usmani, S., Kumar, S. & Sadhya, D. Efficient deepfake
detection using shallow vision transformer. Multimed
Tools Appl 83, 12339–12362 (2024).
https://doi.org/10.1007/s11042-023-15910-z

[12]S, A., P, V., Amerini, I. et al. D-Fence layer: an ensemble
framework for comprehensive deepfake
detection. Multimed Tools Appl 83, 68063–68086 (2024).
https://doi.org/10.1007/s11042-024-18130-1

[13]Xu, Q., Qiao, H., Liu, S. et al. Deepfake detection based
on remote photoplethysmography. Multimed Tools
Appl 82, 35439–35456 (2023).
https://doi.org/10.1007/s11042-023-14744-z

[14]Jellali, A., Ben Fredj, I. & Ouni, K. Pushing the
boundaries of deepfake audio detection with a hybrid
MFCC and spectral contrast approach. Multimed Tools
Appl (2024). https://doi.org/10.1007/s11042-024-19819-z

[15]Pranay Kumar, B., Shaheer Ahmed, M. & Sadanandam,
M. Designing a Safe Ecosystem to Prevent Deepfake-
Driven Misinformation on Elections. DISO 3, 19 (2024).
https://doi.org/10.1007/s44206-024-00107-0

[16]Megahed, A., Han, Q. & Fadl, S. Exposing deepfake using
fusion of deep-learned and hand-crafted
features. Multimed Tools Appl 83, 26797–26817 (2024).
https://doi.org/10.1007/s11042-023-16329-2.

https://doi.org/10.1007/s11042-024-18641-x
https://doi.org/10.1007/s12559-024-10255-7
https://doi.org/10.1007/s12559-024-10255-7
https://doi.org/10.1007/s11468-024-02407-0
https://doi.org/10.1007/s41870-023-01494-2
https://doi.org/10.1038/s42003-024-06372-6
https://doi.org/10.1007/s00521-024-10181-7
https://doi.org/10.1007/s00521-024-10181-7
https://doi.org/10.1186/s13640-024-00641-4
https://doi.org/10.1007/s11042-024-18235-7
https://doi.org/10.1007/s00530-023-01248-x
https://doi.org/10.1007/s42979-024-03105-8
https://doi.org/10.1007/s42979-024-03105-8
https://doi.org/10.1007/s11042-023-15910-z
https://doi.org/10.1007/s11042-024-18130-1
https://doi.org/10.1007/s11042-023-14744-z
https://doi.org/10.1007/s11042-024-19819-z
https://doi.org/10.1007/s44206-024-00107-0

